產品規格TO-220F包裝說明全新包裝TSS
是否進口否
肖特基二管結構:
新型高壓SBD的結構和材料與傳統SBD是有區別的。傳統SBD是通過金屬與半導體接觸而構成。金屬材料可選用鋁、金、鉬、鎳和鈦等,半導體通常為硅(Si)或化鎵(GaAs)。由于電子比空穴遷移率大,為獲得良好的頻率特性,故選用N型半導體材料作為基片。為了減小SBD的結電容,提高反向擊穿電壓,同時又不使串聯電阻過大,通常是在N+襯底上外延一高阻N-薄層。其結構示圖如圖1(a),圖形符號和等效電路分別如圖1(b)和圖1(c)所示。在圖1(c)中,CP是管殼并聯電容,LS是引線電感,RS是包括半導體體電阻和引線電阻在內的串聯電阻,Cj和Rj分別為結電容和結電阻(均為偏流、偏壓的函數)。 大家知道,金屬導體內部有大量的導電電子。當金屬與半導體接觸(二者距離只有原子大小的數量級)時,金屬的費米能級半導體的費米能級。在金屬內部和半導體導帶相對應的分能級上,電子密度小于半導體導帶的電子密度。因此,在二者接觸后,電子會從半導體向金屬擴散,從而使金屬帶上負電荷,半導體帶正電荷。由于金屬是理想的導體,負電荷只分布在表面為原子大小的一個薄層之內。而對于N型半導體來說,失去電子的施主雜質原子成為正離子,則分布在較大的厚度之中。電子從半導體向金屬擴散運動的結果,形成空間電荷區、自建電場和勢壘,并且耗盡層只在N型半導體一邊(勢壘區全部落在半導體一側)。勢壘區中自建電場方向由N型區指向金屬,隨熱電子**自建場增加,與擴散電流方向相反的漂移電流,終達到動態平衡,在金屬與半導體之間形成一個接觸勢壘,這就是肖特基勢壘。
在外加電壓為零時,電子的擴散電流與反向的漂移電流相等,達到動態平衡。在加正向偏壓(即金屬加正電壓,半導體加負電壓)時,自建場削弱,半導體一側勢壘降低,于是形成從金屬到半導體的正向電流。當加反向偏壓時,自建場增強,勢壘高度增加,形成由半導體到金屬的較小反向電流。因此,SBD與PN結二管一樣,是一種具有單向導電性的非線性器件。
肖特基二管是以其發明人肖特基博士(Schottky)命名的,SBD是肖特基勢壘二管(SchottkyBarrierDiode,縮寫成SBD)的簡稱。SBD不是利用P型半導體與N型半導體接觸形成PN結原理制作的,而是利用金屬與半導體接觸形成的金屬-半導體結原理制作的。因此,SBD也稱為金屬-半導體(接觸)二管或表面勢壘二管,它是一種熱載流子二管。
肖特基二管是貴金屬(金、銀、鋁、鉑等)A為正,以N型半導體B為負,利用二者接觸面上形成的勢壘具有整流特性而制成的金屬-半導體器件。因為N型半導體中存在著大量的電子,貴金屬中僅有少量的自由電子,所以電子便從濃度高的B中向濃度低的A中擴散。顯然,金屬A中沒有空穴,也就不存在空穴自A向B的擴散運動。隨著電子不斷從B擴散到A,B表面電子濃度逐漸降低,表面電中性被破壞,于是就形成勢壘,其電場方向為B→A。但在該電場作用之下,A中的電子也會產生從A→B的漂移運動,從而消弱了由于擴散運動而形成的電場。當建立起一定寬度的空間電荷區后,電場引起的電子移運動和濃度不同引起的電子擴散運動達到相對的平衡,便形成了肖特基勢壘。
典型的肖特基整流管的內部電路結構是以N型半導體為基片,在上面形成用作摻雜劑的N-外延層。陽使用鉬或鋁等材料制成阻檔層。用二氧化硅(SiO2)來消除邊緣區域的電場,提高管子的耐壓值。N型基片具有很小的通態電阻,其摻雜濃度較H-層要高倍。在基片下邊形成N+陰層,其作用是減小陰的接觸電阻。通過調整結構參數,N型基片和陽金屬之間便形成肖特基勢壘,如圖所示。當在肖特基勢壘兩端加上正向偏壓(陽金屬接電源正,N型基片接電源負)時,肖特基勢壘層變窄,其內阻變小;反之,若在肖特基勢壘兩端加上反向偏壓時,肖特基勢壘層則變寬,其內阻變大。
綜上所述,肖特基整流管的結構原理與PN結整流管有很大的區別通常將PN結整流管稱作結整流管,而把金屬-半導管整流管叫作肖特基整流管,采用硅平面工藝制造的鋁硅肖特基二管也已問世,這不僅可節省貴金屬,大幅度降低成本,還改善了參數的一致性。
肖特基勢壘是指具有整流特性的金屬-半導體接觸,就如同二管具有整流特性。是金屬-半導體邊界上形成的具有整流作用的區域。
肖特基勢壘指具有大的勢壘高度(也就是ΦBn 或者 ΦBp 》》 kT),以及摻雜濃度比導帶或價帶上態密度低的金屬-半導體接觸(施敏, 半導體器件物理與工藝, 二版, 7.1.2)。
肖特基勢壘是指具有整流特性的金屬-半導體接觸,就如同二管具有整流特性。是金屬-半導體邊界上形成的具有整流作用的區域。
金屬與n型半導體形成的肖特基勢壘如圖1所示。金屬—半導體作為一個整體在熱平衡時有同樣費米能級。肖特基勢壘相較于PN界面大的區別在于具有較低的界面電壓,以及在金屬端具有相當薄的(幾乎不存在)空乏區寬度。由半導體到金屬,電子需要克服勢壘;而由金屬向半導體,電子受勢壘阻擋。在加正向偏置時半導體一側的勢壘下降;相反,在加反向偏置時,半導體一側勢壘增高。使得金屬-半導體接觸具有整流作用(但不是一切金屬—半導體接觸均如此)。如果對于N型半導體,金屬的功函數大于半導體的功函數,對于P型半導體,金屬的功函數小于半導體的功函數,以及半導體雜質濃度不小于10^19/立方厘米數量級時會出現歐姆接觸,它會因雜質濃度高而發生隧道效應,以致勢壘不起整流作用。并非所有的金屬-半導體接面都是具有整流特性的,不具有整流特性的金屬-半導體接面則稱為歐姆接觸。整流屬性決定于金屬的功函、固有半導體的能隙,以及半導體的摻雜類型及濃度。在設計半導體器件時需要對肖特基效應相當熟悉,以確保不會在需要歐姆接觸的地方意外地產生肖特基勢壘。當半導體均勻摻雜時肖特基勢壘的空間電荷層寬度和單邊突變P-N結的耗盡層寬度相一致。
肖特基勢壘是什么?具有什么應用優勢
優點
由于肖特基勢壘具有較低的界面電壓,可被應用在某器件需要近似于一個理想二管的地方。在電路設計中,它們也同時與一般的二管及晶體管一起使用, 其主要的功能是利用其較低的界面電壓來保護電路上的其它器件。
然而,自始至終肖特基器件相較于其它半導體器件來說能被應用的領域并不廣。
器件
肖特基二管,肖特基勢壘自身作為器件即為肖特基二管。
肖特基勢壘碳納米管場效應晶體管ET:金屬和碳納米管之間的接觸并不理想所以層錯導致肖特基勢壘,所以我們可以使用這一勢壘來制作肖特基二管或者晶體管等等。
二管和整流器,Diodes Inc
二管配置單路
大連續正向電流500mA
每片芯片元件數目1
峰值反向重復電壓30V
安裝類型表面貼裝
封裝類型SOD-323
二管類型肖特基
引腳數目2
大正向電壓降450mV
長度1.8mm
寬度1.4mm
高度1.1mm
高工作溫度+125 °C
峰值反向電流500?A
尺寸1.8 x 1.4 x 1.1mm
峰值非重復正向浪涌電流2A
http://www.41115.cc